Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Pharmacogenetics is a promising strategy to facilitate individualized care for patients with Major Depressive Disorder (MDD). Research is ongoing to identify the optimal genetic markers for predicting outcomes to antidepressant therapies. The primary aim of this systematic review was to summarize antidepressant pharmacogenetic studies to enhance understanding of the genes, variants, datatypes/methodologies, and outcomes investigated in the context of MDD. The secondary aim was to identify clinical genetic panels indicated for antidepressant prescribing and summarize their genes and variants. Screening ofN = 5793 articles yieldedN = 390 for inclusion, largely comprising adult (≥ 18 years) populations. Top‐studied variants identified in the search were discussed and compared with those represented on theN = 34 clinical genetic panels that were identified. Summarization of articles revealed sources of heterogeneity across studies and low rates of replicability of pharmacogenetic associations. Heterogeneity was present in outcome definitions, treatment regimens, and differential inclusion of mediating variables in analyses. Efficacy outcomes (i.e., response, remission) were studied at greater frequency than adverse‐event outcomes. Studies that used advanced analytical approaches, such as machine learning, to integrate variants with complimentary biological datatypes were fewer in number but achieved higher rates of significant associations with treatment outcomes than candidate variant approaches. As large biological datasets become more prevalent, machine learning will be an increasingly valuable tool for parsing the complexity of antidepressant response. This review provides valuable context and considerations surrounding pharmacogenetic associations in MDD which will help inform future research and translation efforts for guiding antidepressant care.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Abstract Pharmacogenomic (PGx) biomarkers integrated using machine learning can be embedded within the electronic health record (EHR) to provide clinicians with individualized predictions of drug treatment outcomes. Currently, however, drug alerts in the EHR are largely generic (not patient‐specific) and contribute to increased clinician stress and burnout. Improving the usability of PGx alerts is an urgent need. Therefore, this work aimed to identify principles for optimal PGx alert design through a health‐system‐wide, mixed‐methods study. Clinicians representing multiple practices and care settings (N = 1062) in urban, rural, and underserved regions were invited to complete an electronic survey comparing the usability of three drug alerts for citalopram, as a case study. Alert 1 contained a generic warning of pharmacogenomic effects on citalopram metabolism. Alerts 2 and 3 provided patient‐specific predictions of citalopram efficacy with varying depth of information. Primary outcomes included the System's Usability Scale score (0–100 points) of each alert, the perceived impact of each alert on stress and decision‐making, and clinicians' suggestions for alert improvement. Secondary outcomes included the assessment of alert preference by clinician age, practice type, and geographic setting. Qualitative information was captured to provide context to quantitative information. The final cohort comprised 305 geographically and clinically diverse clinicians. A simplified, individualized alert (Alert 2) was perceived as beneficial for decision‐making and stress compared with a more detailed version (Alert 3) and the generic alert (Alert 1) regardless of age, practice type, or geographic setting. Findings emphasize the need for clinician‐guided design of PGx alerts in the era of digital medicine.more » « less
-
Background & Aims Metabolomic and lipidomic analyses provide an opportunity for novel biological insights. Cholangiocarcinoma (CCA) remains a highly lethal cancer with limited response to systemic, targeted, and immunotherapeutic approaches. Using a global metabolomics and lipidomics platform, this study aimed to discover and characterize metabolomic variations and associated pathway derangements in patients with CCA. Methods Leveraging a biospecimen collection, including samples from patients with digestive diseases and normal controls, global serum metabolomic and lipidomic profiling was performed on 213 patients with CCA and 98 healthy controls. The CCA cohort of patients included representation of intrahepatic, perihilar, and distal CCA tumours. Metabolome-wide association studies utilizing multivariable linear regression were used to perform case–control comparisons, followed by pathway enrichment analysis, CCA subtype analysis, and disease stage analysis. The impact of biliary obstruction was evaluated by repeating analyses in subsets of patients only with normal bilirubin levels. Results Of the 420 metabolites that discriminated patients with CCA from controls, decreased abundance of cysteine-glutathione disulfide was most closely associated with CCA. Additional conjugated bile acid species were found in increased abundance even in the absence of clinically relevant biliary obstruction denoted by elevated serum bilirubin levels. Pathway enrichment analysis also revealed alterations in caffeine metabolism and mitochondrial redox-associated pathways in the serum of patients with CCA. Conclusions The presented metabolomic and lipidomic profiling demonstrated multiple alterations in the serum of patients with CCA. These exploratory data highlight novel metabolic pathways in CCA and support future work in therapeutic targeting of these pathways and the development of a precision biomarker panel for diagnosis.more » « less
-
Background: Individuals with major depressive disorder (MDD) and a lifetime history of attempted suicide demonstrate lower antidepressant response rates than those without a prior suicide attempt. Identifying biomarkers of antidepressant response and lifetime history of attempted suicide may help augment pharmacotherapy selection and improve the objectivity of suicide risk assessments. Towards this goal, this study sought to use network science approaches to establish a multi-omics (genomic and metabolomic) signature of antidepressant response and lifetime history of attempted suicide in adults with MDD. Methods: Single nucleotide variants (SNVs) which associated with suicide attempt(s) in the literature were identified and then integrated with a) p180-assayed metabolites collected prior to antidepressant pharmacotherapy and b) a binary measure of antidepressant response at 8 weeks of treatment using penalized regression-based networks in 245 ‘Pharmacogenomics Research Network Antidepressant Medication Study (PGRN-AMPS)’ and 103 ‘Combining Medications to Enhance Depression Outcomes (CO-MED)’ patients with major depressive disorder. This approach enabled characterization and comparison of biological profiles and associated antidepressant treatment outcomes of those with ( N = 46) and without ( N = 302) a self-reported lifetime history of suicide attempt. Results: 351 SNVs were associated with suicide attempt(s) in the literature. Intronic SNVs in the circadian genes CLOCK and ARNTL (encoding the CLOCK:BMAL1 heterodimer) were amongst the top network analysis features to differentiate patients with and without a prior suicide attempt. CLOCK and ARNTL differed in their correlations with plasma phosphatidylcholines, kynurenine, amino acids, and carnitines between groups. CLOCK and ARNTL -associated phosphatidylcholines showed a positive correlation with antidepressant response in individuals without a prior suicide attempt which was not observed in the group with a prior suicide attempt. Conclusion: Results provide evidence for a disturbance between CLOCK:BMAL1 circadian processes and circulating phosphatidylcholines, kynurenine, amino acids, and carnitines in individuals with MDD who have attempted suicide. This disturbance may provide mechanistic insights for differential antidepressant pharmacotherapy outcomes between patients with MDD with versus without a lifetime history of attempted suicide. Future investigations of CLOCK:BMAL1 metabolic regulation in the context of suicide attempts may help move towards biologically-augmented pharmacotherapy selection and stratification of suicide risk for subgroups of patients with MDD and a lifetime history of attempted suicide.more » « less
-
Abstract Primary sclerosing cholangitis (PSC) is a complex bile duct disorder. Its etiology is incompletely understood, but environmental chemicals likely contribute to risk. Patients with PSC have an altered bile metabolome, which may be influenced by environmental chemicals. This novel study utilized state-of-the-art high-resolution mass spectrometry (HRMS) with bile samples to provide the first characterization of environmental chemicals and metabolomics (collectively, the exposome) in PSC patients located in the United States of America (USA) (n = 24) and Norway (n = 30). First, environmental chemical- and metabolome-wide association studies were conducted to assess geographic-based similarities and differences in the bile of PSC patients. Nine environmental chemicals (false discovery rate, FDR < 0.20) and 3143 metabolic features (FDR < 0.05) differed by site. Next, pathway analysis was performed to identify metabolomic pathways that were similarly and differentially enriched by the site. Fifteen pathways were differentially enriched (P < .05) in the categories of amino acid, glycan, carbohydrate, energy, and vitamin/cofactor metabolism. Finally, chemicals and pathways were integrated to derive exposure–effect correlation networks by site. These networks demonstrate the shared and differential chemical–metabolome associations by site and highlight important pathways that are likely relevant to PSC. The USA patients demonstrated higher environmental chemical bile content and increased associations between chemicals and metabolic pathways than those in Norway. Polychlorinated biphenyl (PCB)-118 and PCB-101 were identified as chemicals of interest for additional investigation in PSC given broad associations with metabolomic pathways in both the USA and Norway patients. Associated pathways include glycan degradation pathways, which play a key role in microbiome regulation and thus may be implicated in PSC pathophysiology.more » « less
-
Age at depressive onset (AAO) corresponds to unique symptomatology and clinical outcomes. Integration of genome-wide association study (GWAS) results with additional “omic” measures to evaluate AAO has not been reported and may reveal novel markers of susceptibility and/or resistance to major depressive disorder (MDD). To address this gap, we integrated genomics with metabolomics using data-driven network analysis to characterize and differentiate MDD based on AAO. This study first performed two GWAS for AAO as a continuous trait in (a) 486 adults from the Pharmacogenomic Research Network-Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS), and (b) 295 adults from the Combining Medications to Enhance Depression Outcomes (CO-MED) study. Variants from top signals were integrated with 153 p180-assayed metabolites to establish multi-omics network characterizations of early (more » « less
An official website of the United States government
